
From Quasi-Synchrony to LTTA

Guillaume Baudart Timothy Bourke Marc Pouzet

21 November 2013

A Quasi-periodic System is one where every process P is periodic with a nominal
period Tn

P and a jitter of ε. The time between two ticks may thus vary between ‘small
margins’ during an execution:

Tn
P − ε ≤ κi − κi−1 ≤ Tn

P + ε.

Signal values are sent across a bus to one-place buffers at a receiver, whence they are
sampled periodically.

In his ‘cooking book’ [2], Paul Caspi showed how to build abstractions for imple-
menting discrete systems on top of this architecture. These discrete abstractions can be
expressed in a synchronous language and used to simulate quasi-synchronous systems [4].
In later work, with Albert Benveniste and others [1, 3, 5], he proposed communication
protocols for preserving the discrete semantics of signal flows.

We present a brief survey of this work. In particular, we explain the simple relations
between the periods and jitters of real-time tasks, and overwriting and oversamplings
of values between writers and readers (it’s all a matter of fence posts). We generalize
(slightly) the idea of quasi-synchronous traces. We also clarify one of the communication
protocols by modelling it in the hybrid synchronous language Zélus (see Figure 1 and
the corresponding code below).

Exec

last n = 1

〈n = ni fby (n− 1)〉

Early

〈n = n1a fby (n− 1)〉

Later

〈n = n1b fby (n− 1)〉
last n = 1

∧ ¬other_writes / write

last n = 1 / ni = n2a; exec

other_writes
/ write

last n = 1 / ni = n2b; exec

let node controller (sow) = (write, exec, n) where
rec init n = 1
and automaton

| Exec(ni) ->
do n = ni fby (n - 1)
unless sow then do emit write = () in Later
else (last n = 1) then do emit write = () in First

| First ->
do n = n1a fby (n - 1)
unless (last n = 1) then do emit exec = () in Exec(n2a)

| Later ->
do n = n1b fby (n - 1)
unless (last n = 1) then do emit exec = () in Exec(n2b)

init Exec(0)

Figure 1: Time-Based LTTA Protocol

1



References
[1] Benveniste, A., Bouillard, A., and Caspi, P. A unifying view of loosely time-

triggered architectures. In Proceedings of the 10th ACM International Conference
on Embedded Software (EMSOFT’10) (Scottsdale, Arizona USA, Oct. 2010), ACM
Press, pp. 189–198.

[2] Caspi, P. The quasi-synchronous approach to distributed control systems. Tech.
Rep. CMA/009931, VERIMAG, Crysis Project, May 2000.

[3] Caspi, P., and Benveniste, A. Time-robust discrete control over networked
loosely time-triggered architectures. In Proceedings of the 47th IEEE Conference on
Decision and Control (Cancun, Mexico, Dec. 2008), IEEE, pp. 3595–3600.

[4] Halbwachs, N., and Mandel, L. Simulation and verification of aysnchronous
systems by means of a synchronous model. In Proceedings of the 6th International
Conference on Application of Concurrency to System Design (ACSD 2006) (Turku,
Finland, June 2006), IEEE Computer Society, IEEE, pp. 3–14.

[5] Tripakis, S., Pinello, C., Benveniste, A., Sangiovanni-Vincent, A., Caspi,
P., and Di Natale, M. Implementing synchronous models on loosely time triggered
architectures. IEEE Transactions on Computers 57, 10 (2008), 1300–1314.

2


