
A Hybrid Synchronous Language with Hierarchical
Automata∗

Static Typing and Translation to Synchronous Code

Albert Benveniste
INRIA Rennes

albert.benveniste@inria.fr

Timothy Bourke†
INRIA Paris-Rocquencourt
timothy.bourke@inria.fr

Benoît Caillaud
INRIA Rennes

benoit.caillaud@inria.fr

Marc Pouzet
DI, École normale supérieure

marc.pouzet@ens.fr

ABSTRACT
Hybrid modeling tools like Simulink have evolved from sim-
ulation platforms into development platforms on which test-
ing, verification and code generation are also performed. It
is critical to ensure that the results of simulation, compila-
tion and verification are consistent. Synchronous languages
have addressed these issues but only for discrete systems.

Reprising earlier work, we present a hybrid modeler built
from a synchronous language and an off-the-shelf numeri-
cal solver. The main novelty is a language with hierarchical
automata that can be arbitrarily mixed with data-flow and
ordinary differential equations (ODEs). A type system stat-
ically ensures that discrete state changes are aligned with
zero-crossing events and that the function passed to the nu-
merical solver has no side-effects during integration. Well-
typed programs are compiled by source-to-source translation
into synchronous code which is then translated into sequen-
tial code using an existing synchronous language compiler.

Categories and Subject Descriptors
C.3 [Special-purpose and application-based systems]:
Real-time and embedded systems; D.3.2 [Language clas-
sifications]: Data-flow languages

General Terms
Algorithms, Languages, Theory

Keywords
Real-time systems; Hybrid systems; Synchronous languages;
Block diagrams; Compilation; Semantics; Type systems

†Located at DI, École normale supérieure.
∗This work was supported by the SYNCHRONICS large
scale initiative of INRIA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EMSOFT’11, October 9–14, 2011, Taipei, Taiwan.
Copyright 2011 ACM 978-1-4503-0714-7/11/10 ...$10.00.

1. INTRODUCTION
Embedded systems are usually envisioned as discrete com-

ponents that interact with a physical environment. This ex-
plains much of the success of hybrid modeling tools such
as Simulink,1 which have progressively evolved from sim-
ulation platforms to development platforms where a single
source code is used for simulation, testing, formal verifica-
tion and the generation of embedded code. It is becoming
critical to place such tools on a firm semantical basis to
be able to prove that the results of simulation, compilation
and verification are mutually consistent: simulation results
must be reproducible; generated code must be faithful to
the original model and efficient; verification results on the
model should also be valid for generated code.

Synchronous languages [2] already addressed these issues
for a class of discrete real-time systems for which time- and
resource-bounded code can be generated. They abstract
completely from the physical environment, treating it solely
as a source of discrete sampled inputs and a recipient for
discrete outputs. They concern themselves with the details
of how discrete instants are produced but largely ignore the
gaps in between. The physical environment, on the other
hand, continues to evolve during such gaps. It is usually
modeled with ordinary differential equations (ODEs) or with
differential algebraic equations (DAEs) that interact closely
with discrete controllers and may exhibit discontinuities at
discrete instants. While a synchronous description of the
whole is possible, replacing differential by difference equa-
tions, obtaining both efficiency and precision in simulations
really necessitates the use of a numerical variable-step solver.
This calls for a clear separation of continuous parts, which
must be compiled specifically for activation by the solver,
from discrete parts, which can be left unchanged.

Building on earlier work [1], we propose a language for hy-
brid systems by extending an existing synchronous language
with ODEs and an off-the-shelf numerical solver (Sundi-
als CVODE [8] is used in our prototype compiler). The
synchronous language is used both for programming and
as a target for code generation. The extension is conser-
vative with respect to the synchronous subset: any syn-
chronous function is compiled/optimized/executed exactly
as if it were written in a regular synchronous language.
There are two primary motivations for this approach. First,

1http://www.mathworks.com/products/simulink

http://www.mathworks.com/products/simulink

Data-flow + Auto
+ ODE

Data-flow + Auto

Data-flow + ODE Data-flow

Imperative code

ode

ode
auto auto

codegen

Figure 1: Possible compilation approaches

synchronous languages are already a well-understood solu-
tion for modeling and compiling discrete components: their
extension with hybrid features provides an integrated solu-
tion for modeling and simulating systems together with their
environments. This is particularly relevant for systems that
are mostly discrete, but that incorporate some physical el-
ements. Second, when physical systems are simulated on
a computer, it is not possible to observe continuous vari-
ables at all values of simulated time t. On the contrary, t
must be increased through a series of discrete increments.
A synchronous language can thus act as a compilation tar-
get for hybrid models. Models are first translated into the
synchronous subset of the language which is then compiled
and linked with a numerical solver for the approximation
of continuous trajectories. Note that the exact instants to
sample are not necessarily known in advance nor periodic,
but rather arise from the combined dynamics of continuous
and discrete elements; that is, from the to and fro between
a numerical solver and a discrete program. By translating
the hybrid part into synchronous code and leaving the syn-
chronous part unchanged, we can reuse most of the existing
code generation and optimization techniques developed for
synchronous languages [2] and also reduce the risk of differ-
ences between simulated and compiled code.

Contribution and organization of the paper.
The main novelty of this paper is a language which in-

cludes sophisticated control structures, namely hierarchical
automata. These control structures can be composed in par-
allel or hierarchically, together with data-flow equations and
ODEs with possible reset. Importantly, the control struc-
tures are valid in both discrete and continuous contexts. For
example, the automata can be used to alternate between dis-
crete control laws as in Mode Automata [12] or between sets
of differential equations as in Hybrid Automata [7].

A type system is required to distinguish, at compile time,
discrete computations from continuous ones. It ensures that
discrete state changes are aligned with zero crossing events
and determines which parts of a program are transformed for
execution by a solver and which remain unchanged. Func-
tions generated from well-typed programs are provably free
of side effects when executed by a solver during the approx-
imation of integral values. Maintaining this property is not
easy when the bodies of control structures contain differen-
tial equations; there are several subtle typing issues. For
example, transitions from one state to another in hybrid au-
tomata must only occur on zero-crossing events. One of the
contributions of this paper is to clarify these issues.

We present a source-to-source transformation, for well-
typed programs, that translates the full language into a

synchronous subset amenable to code generation by a syn-
chronous compiler. The ultimate goal is to translate pro-
grams written in a hybrid data-flow language with automata
into imperative code, i.e., to go from the top-left of Fig-
ure 1 to the bottom-right. Given that synchronous pro-
grams with control structures (Data-flow+Auto) can already
be translated to data-flow synchronous code (Data-flow) [12,
5], and that (Data-flow + ODE) can be translated to data-
flow synchronous code (Data-flow) [1], there are two pos-
sible approaches. The first is to define a translation from
(Data-flow+Auto+ODE) to (Data-flow+ODE) that removes
control structures but not hybrid definitions. The second
is to define a translation from (Data-flow+Auto+ODE) to
(Data-flow+Auto) that removes hybrid constructs but not
control structures. The latter translation, that effectively
translates Hybrid Automata into Mode Automata, is consid-
ered in this paper. It is modular and maintains the structure
of programming constructs.

This paper continues in Section 2 by recalling both the
need for types when mixing discrete synchronous code with
ODEs, and also the essentials of translating hybrid programs
into synchronous code. It sketches the typing and compi-
lation issues specific to control structures. In Section 3,
the syntax of a basic synchronous language with control
structures is presented, and the semantics of hierarchical
automata are recalled. The extension of the language with
ODEs is detailed in Section 4, and its type system is pre-
sented. The source-to-source translation is presented in Sec-
tion 5. Related work is discussed in Section 6.

2. OVERVIEW
Following Lee and Zheng [10], we consider hybrid systems

from a programming language perspective. We treat, in
particular, the design, typing and compilation of a language
which mixes data-flow equations and first-order ODEs. We
do not consider verification.

Hybrid systems, by their very nature, involve the interwo-
ven interaction of continuous dynamics and discrete events.
Considered in isolation, a system’s continuous dynamics can
be expressed as an initial value problem x′ = f(t, x) initx0,
where t ∈ IR≥0 represents physical time, x is a vector of
continuous state variables, x′ is a vector of instantaneous
derivatives and x0 is an initial state vector. Given f , a nu-
merical solver (like Sundials [8]) approximates the value of
x for increasing instants t1, t2, . . . of t. The gap between in-
stants, the ‘step size’, may vary. And as, internally, a solver
may jump back and forth when going from ti to ti+1 to
achieve acceptable accuracy, f must be free of side effects,
that is, combinatorial, at each (integration) step.

The first extension to this scheme to account for hybrid
systems is to control the interruption of continuous trajecto-
ries. There are essentially two techniques: time horizons and
vectors of zero-crossing expressions. Time horizons are use-
ful for efficiently treating models that include periodically-
executed discrete tasks. This is an important class of sys-
tems but not the only one: real applications also exhibit
modes with discrete changes, in both the controller and the
environment, that are not necessarily periodic or known in
advance (e.g., an emergency braking system, or a clutch
lock-up model, or a fuel control system2). Such systems
are more adequately addressed by the zero-crossing mecha-

2See the Simulink/Stateflow automotive examples.

nism. Given a zero-crossing function z = g(t, x), a solver can
check, during integration, for changes of sign in elements of
z that may indicate discontinuities in continuous state vari-
ables, or other interesting events. Periodic timers can, in
fact, be encoded as a particular form of zero-crossing. For
example, this fragment defines a periodic signal:

der p = 1.0 init -2.0 reset -2.0 every z and z = up(p)

The value of p increases with slope 1 from an initial value
of −2, and is reset to −2 every time p crosses zero.3 The
variable z is true at instants (2n)n∈IN>0 . Three types of ac-
tion are possible in response to such discrete (zero-crossing)
events: (1) reset elements of the continuous state vector x
(as in the example above); (2) change the values of discrete
state variables, which are implicit input parameters for f
and g; (3) trigger side-effects, e.g., update a display. There
may be a sequence of such actions, a cascade, before the
solver is invoked again to approximate continuous behaviors.
Thus, the overall execution of a hybrid system alternates be-
tween continuous phases where integration is performed by
a solver and discrete phases where side-effects may occur.

In [1], an elementary, Lustre-like language extended with
ODEs is introduced, along with a typing and compilation
scheme for producing code linked with a black-box numer-
ical solver. A type system is used to statically separate
the continuous part, which is exercised by the numerical
solver, from the discrete part, which is programmed in a syn-
chronous language like Lustre or Lucid Synchrone, and
which must not act during integration. A signal is deemed
discrete if activated on a discrete clock, defined [1, §2]:

A clock is termed discrete if it has been declared
so or if it is the result of a zero-crossing or a
sub-sampling of a discrete clock. Otherwise, it is
termed continuous.

A simple type system guarantees that when a program in-
corporates an ODE, all discrete changes, the aforementioned
actions 1, 2 and 3, are aligned with zero-crossing events. The
need for a type system can be understood from this example:

der time = 1.0 init 0.0 and y = sum(time)

In this example, an ODE defining time4 occurs in parallel
with a synchronous function sum, whose definition is imma-
terial, but to be specific, could be assumed as:5

let node sum(x) = cpt where
rec cpt = x -> (pre cpt +. x)

The example program is rejected because the computation of
time is defined on a continuous clock while the computation
of y is expected to run on a discrete clock.

Following [1], we reject such programs statically. The in-
tuition is to assign a kind k ∈ {A, D, C} to every expression
and equation. An expression has kind D when it must be
compiled with an internal discrete state and activated on a
discrete clock, C when it must be compiled for activation by

3This can be written in Simulink as an integral with state
port (here written st) and rising zero-crossing detection:
p, st = 1

s
(−2.0, ↑(st), 1).

4∀t ∈ IR≥0, time(t) = 0 +
∫ t

0
1 dt = t

5∀n ∈ IN, sum(x)(n) = Σn
i=0(xi)

a solver on a continuous clock, and A when it is combina-
torial and can be activated on any clock. In the example,
sum is of kind D, whereas der y = 1.0 init 0.0 is of kind
C. The function sum cannot be activated directly on the
stream time because the two have different kinds.

The original program should instead be written:

der time = 1.0 init 0.0
and
y = sum(time) every up(ez) init 0.0

where ez is an expression to be monitored for zero-crossing
events. The semantics of y are now y(0) = 0, i.e., y is
initialized to 0, and, if tz1 , tz2 , ..., tzi , . . . are the instants of
zero-crossing of ez, y(tzi) = Σj≤i(time(tzj)), i.e., y is only
computed at instants where ez crosses zero, and otherwise it
keeps its previous value, i.e., y(t) = y(tzi) for tzi ≤ t < tzi+1 .

Well-typed programs mixing ODEs and synchronous code
activated on zero-crossings can be translated into purely syn-
chronous code. Such a source-to-source translation ensures
traceability between the source code and its operational form
and allows the reuse of the existing optimization techniques
in synchronous compilers. The principle is to translate a hy-
brid function activated on a continuous clock—one that con-
tains ODEs and zero-crossings—into a regular synchronous
function. The function is augmented with extra inputs for
passing continuous state values and zero-crossing notifica-
tions, and also with extra outputs for returning instanta-
neous derivative values, updated continuous state values,
and zero-crossing expression values. As an example, con-
sider a bouncing ball with initial position y0 and speed y′0:

let hybrid bouncing(y0,y’0) = y where
rec der y = y’ init y0
and der y’ = -9.81 init y’0

reset -0.9 *. last y’ every up(-. y)

Whenever the ball hits the ground (y changes from posi-
tive to negative), its speed is reset to -0.9 *. last y’,
where last y’ is the left limit of signal y’ when y’ is left-
continuous (when y crosses zero), as is the case here, and
the previous value of y’ otherwise. The translation gives:

let node bouncing((y0,y’0), ((ly,ly’), z)) =
(y, ((y,y’), (dy,dy’), upz))

where
rec dy = y’ and y = y0 -> ly and upz = -. y
and dy’ = -9.81 and last_y’ = y’0 -> ly’
and y’ = if z then -0.9 *. last_y’ else last_y’

The der definition of y is replaced with two new definitions:
dy defines the instantaneous derivative of y; and y is equal to
y0 at the very first instant, and thereafter to ly, the value
estimated by the solver.6 The der definition of y’ is also
replaced: initially last_y’ is equal to y’0, and thereafter it
is equal to the input ly’; y’ takes the same values unless
the zero-crossing input z is true, in which case it becomes
-0.9 *. last_y’. In general, an extra ‘last_y’ definition
is needed to ensure correct initialization, in the presence of
the last operator. The variable upz equals -. y. In this
system, ly and ly’ are extra inputs to be computed by the
solver whereas dy and dy’ are extra outputs to be returned
to the solver.7

6The Lustre initialization operator, · -> · has the semantics:
(x -> y)0 = x0 and for all n ∈ IN>0, (x -> y)n = yn.
7To avoid excessive copying, the extra inputs and outputs
can instead be stored in arrays with in-place modification.

This translation is fine for a language without control
structures. But control structures, such as hierarchical au-
tomata, are essential for designing complex systems with
different operating modes. Such automata may appear at
many levels of a system, in both discrete and continuous
contexts. The problem, then, is not whether to extend the
basic language, but rather how to do so.

We explain our approach with an example automaton:

let hybrid two(y0,y’0,z1,z2) = y where
rec init y = y0
and automaton

| Gravity ->
local y’ in
do der y’ = -9.81 init y’0 and der y = y’
until z1 then Rising done

| Rising ->
do der y = 1.0
until z2 then Gravity done

end

The initial value of y is given by the equation init y =

y0. The dynamics of y depend on the active mode of the
automaton. In Gravity, the initial mode, y′(t) = −9.81.
In Rising, y′(t) = 1. The notation until z1 then Rising

defines a weak preemption with reset: the body of state
Gravity is executed before the condition z1 is tested. If it is
true, Rising becomes the active mode in the next reaction
and the equations it contains will be reinitialized.

This program can be transformed into a discrete one.

let node two((y0,y’0,z1,z2), (ly,ly’)) =
(y, ((y,y’), (dy,dy’))) where

rec y = y0 -> ly
and automaton

| Gravity ->
do dy’ = -9.81 and dy = y’
and y’ = y’0 -> ly’
until z1 then Rising done

| Rising ->
do dy = 1.0 and y’ = ly’ and dy’ = 0.0
until z2 then Gravity done

end

As before, two inputs, ly and ly’, are added, as are two
pairs of outputs: state variables y and y’ and instantaneous
derivatives dy and dy’. While y’ was initially declared lo-
cal, it cannot be returned as an output unless its scope is
extended, and it and its derivative must be given values in
the other mode: we set them, respectively, to the estimate
from the solver (ly’) and to 0.0; inactive states are effec-
tively suspended (the same convention as Simulink). The
result can be compiled by existing tools using standard tech-
niques to transform automata into data-flow definitions [5].

In the previous example, the discrete events z1 and z2 are
inputs. In general, discrete events may be computed locally
and values may be communicated between states. Consider:

let hybrid bouncing(y0, y’0, start) = y where
rec init y = y0
and automaton

| Await ->
do der y = 0.0 until start then Bounce(y’0) done

| Bounce(v) ->
local c, y’ in
do der y’ = -9.81 init v and der y = y’

and c = up(-. y)
until c on (y’ < eps) then Await

| c then Bounce(-0.9 *. y’)
done

end

The program has two modes. It waits in the initial one until
the input start becomes true. It then enters the Bounce

mode, which contains a variable c defined to be true when
a zero-crossing occurs on the expression -. y. When that
event occurs, two transitions are possible. They are pri-
oritized from top to bottom: if condition y’ < eps is true
(written c on (y’ < eps)), the automaton returns to the
Await mode where the ball does not move; otherwise, Bounce
is re-entered with a new value for the parameter v, which is
used in the concomitant reset of y’ to model a bounce.

In the translation, the der definitions are treated as be-
fore. For the zero-crossing expression, a new input z replaces
up(-. y), and a new output upz is defined to be -. y.

let node bouncing((y0, y’0, start), ((ly, ly’), z)) =
(y, ((y, y’), (dy, dy’), upz)) where

rec y = y0 -> ly
and automaton

| Await ->
do dy = 0.0 and dy’ = 0.0

and upz = 0.0 and y’ = ly’
until start then Bounce(y’0) done

| Bounce(v) ->
local c in
do dy’ = -9.81 and dy = y’ and c = z

and upz = -. y and y’ = v -> ly’
until c & (y’ < eps) then Await

| c then Bounce(-0.9 *. y’)
done

end

Transitions only occur on discrete events, viz. start and
up(-.y); it is impossible for them to fire during integral
approximation, as z and start will be false. The value of
upz is only relevant if Bounce is active; it is set to 0 in Await.

Note that a discrete equation cannot be executed in a
mode of a continuous automaton, even if, unlike the previ-
ous example with sum, it does not interact with the other
continuous variables. Consider, for example:

let hybrid wrong(z) = (y, c) where
rec automaton

| First -> do der y = 2.0 init 1.0
and c = 0 -> pre c + 1
until z then First done

In this automaton, an ODE y occurs in parallel with a dis-
crete counter c. If [0, tz] ⊆ IR≥0 such that z(tz) = true and
for all t ∈ [0, tz), z(t) = false, initially, the semantics of y is:

∀t ∈ [0, tz), y(t) = 1 +
∫ t

0
2 dt = 1 + 2 t

The counter itself is defined on a discrete time basis. Then,
what is the semantics of the parallel composition of the com-
putation of y with that of c? Taking an initial part [0..l] ⊆ IN
for some l ∈ IN , it could be tempting to state that:

∀n ∈ [1..l], cn = cn−1 + 1 and c0 = 0

But then, how should [0, tz) and [0..l] be related and what
is the value of l? The two equations do not share the same
timescale (y runs on a continuous clock whereas c should be
activated on a discrete one) and the meaning of their paral-
lel composition is thus unclear. Moreover, once compiled, it
would be necessary to continuously increment c during inte-
gration. This is an error which must be statically detected.8

8Rewritten in Stateflow, the compiler complains: In con-
tinuous time Stateflow charts, outputs cannot be read if they

Perhaps surprisingly, this new case is subsumed by the pre-
viously proposed system of kinds, which rejects wrong. The
system of kinds clarifies some of the restrictions imposed by
the MathWorks Stateflow compiler.

The source-to-source translation of automata is only valid
if the generated transition and zero-crossing functions are
side-effect free. This is guaranteed by extending the analysis
that assigns kinds. Basically, a kind is assigned to a whole
automaton, and the equations in the bodies of every state
must have that kind. It is possible, though, in automata
of kind C, to put discrete computations on transitions since
they can only be activated on a discrete clock. This simple
type discipline ensures that, once compiled, the transition
function is free of side-effects during integration. In the next
two sections, we formalize the static typing of programs with
hierarchical automata and the source-to-source translations.

3. A SYNCHRONOUS LANGUAGE WITH
AUTOMATA

3.1 Syntax
We first consider a synchronous language that mixes data-

flow equations and hierarchical automata. Hybrid features
are added in Section 4.

d ::= let k f(p) = e | d; d

k ::= D | A
e ::= x | v | e fby e | last(x) | f(e) | (e, e) | let E in e

p ::= (p, p) | x
E ::= x = e | E and E

| automaton (S(p) −→ u unless s∗)+

u ::= local x in u | do E until s∗

s ::= e then S(e) | e continue S(e)

A program is a sequence of global declarations (d) of func-
tions over signals (let k f(p) = e), where k is the kind of
the function: k = A declares that f is combinatorial; k = D

declares that f may contain delays or automata.9 Expres-
sions are composed of variables (x), immediate values (v),
initialized delays (e fby e), last values of signals (last(x)),
applications of functions to arguments (f(e)), pairs (e, e)
and local declarations (let E in e), which ultimately take
the value of an e that may contain variables defined in a
set of equations E. Patterns, p, are variables (x) or pairs of
patterns (p, p). Other tuples are shorthand for nested pairs.

Equations are denoted E and include variables x of value
e (x = e), sets of equations in parallel (E and E), local
declarations of variables x in equations (local x in E), and
automata (automaton (S(p) −→ u unless s∗)+).

An automaton is a list of handlers (S(p) −→ u unless s∗):
S(p) is a parameterized state name, u is the state body and
s∗ is a sequence of strong transitions. The body u may con-
tain variables local to the state (local x in u) but it is ulti-
mately a set of equations E paired with a sequence of weak
transitions (do E until s∗).10 There are two types of tran-

are ever written to in during actions or transition conditions.
Therefore, the use of ’c’ (#26) is illegal in the following con-
text: State First #19 in Chart ’Chart’ (#18): during: c :=
c + 1; (Simulink version 7.7.0.471).
9In the concrete syntax, A is omitted and D is written node.

10The keywords unless and until are omitted in the con-
crete syntax for empty transition sequences.

sitions: either the target state is reset on entry (e then S(e))
or it is resumed (e continue S(e)), i.e. entered with history.
S(e) gives the the target state name (S) and a value (e) to
pattern match against that state’s parameters. The short-
hand S, i.e., a state with no parameters, stands for S(x) in
equations, with x a fresh variable, and S(()) in transitions.

3.2 Examples and Intuitive Semantics
The distinction between combinatorial (kind A) and state-

ful functions (kind D) is necessary as they have different
implementations. Combinatorial functions are typically im-
ported from the host language (e.g., integer or boolean op-
erators) and have no internal state. Such functions can be
composed to form new combinatorial functions which are
translated directly into the host language. Their type signa-

ture is of the form t1
A→ t2 with t1 and t2 as input and output

types respectively. A stateful function, in comparison, may
contain stateful operators (e.g., fby, pre, ->), automata or
other stateful functions. Their implementation in the host
language needs an extra argument for passing a mutable
internal state record—all instances of such a function share
the same compiled code but each is allocated a distinct state

value. Their type signature is of the form t1
D→ t2. The kind

of a function is validated by static typing.
The semantics of data-flow equations is the one of Lus-

tre and not recalled here. Automata deserve more atten-
tion. We adopt the automata of Lucid Synchrone [14], whose
detailed semantics is given in [4]. The two transition kinds
(strong and weak) and the two ways of entering a target state
(history and reset) give four possible types of transitions,
which is typical in the majority of languages or tools for
embedded system design that have hierarchical automata,
like, for example, the hierarchical automata of Scade 6,
Ptolemy II [9], Statecharts [6], and Stateflow. An au-
tomaton’s behavior in a reaction depends on its immediate
prior state Sprior ; initially the first in the sequence (which
must take () as argument). It is computed in four steps:

1. For strong preemptions, we consider the (si)i∈I of the
handler unless (si)i∈I of Sprior . Each si has either the
form ei then Si(sei), or the form ei continue Si(sei).
All (ei)i∈I are computed to give a list of booleans.

2. If none of the (ei)i∈I are true, the current state remains
active for the reaction: Sactive = Sprior . Otherwise, the
branch corresponding to the earliest true expression ek
gives the active state: Sactive = Sk(v), where v results
from evaluating sek.

3. The body u of the active state Sactive is reset if the last
transition, be it strong or weak, had the form · then ·.
Execution passes through all u = local x in u′ into u′,
and when u = do E until (sj)j∈J , E is executed. After-
ward, all weak transitions (sj)j∈J are computed to find
the state in which to begin the next reaction. Each sj
has one of the forms ej then sej , or ei continue sei. All
(ei)i∈J are computed.

4. If none of the (ei)i∈J are true, the next state, i.e. Sprior at
the next reaction, will be Sactive . Otherwise, the branch
corresponding to the earliest true expression ek′ gives the
next state Sk′(v), where v results from immediately eval-
uating sek′ .

4. HYBRID SYNCHRONOUS LANGUAGE
This basic language is extended with three constructs: or-

dinary differential equations, tests for defining zero-crossing
events and conditionals on those events. We present a min-
imal extension which neglects ODE resets and synchronous
code activations on zero-crossings. They are, however, con-
sidered elsewhere [1] and implemented in our prototype.

4.1 Extended Syntax of the Language
In this section, we consider an extended language:

k ::= D | A | C
e ::= . . . | up(e) | e on e
E ::= . . . | initx = e | derx = e

A new element C is added to the set of kinds (k), for functions
whose bodies must be activated on a continuous clock.

There are two new expression types. up(e) detects a rising
zero-crossing on e, i.e., the instant when e changes from
negative to non-negative and e1 on e2 is present if e1, a zero-
crossing, is present and e2, a boolean expression, is true.

The equations are extended with declarations of an initial
value e0 for x (initx = e0), and an instantaneous derivative
(derx = e). The two are used in combination to define an
ODE x′ = e with initial value e0, for which we also allow
the syntactic shortcut: derx = e init e0.

4.2 Static Typing
As discussed in Section 2, we must distinguish at compile

time what is discrete from what is continuous. We adopt the
convention that a signal is typed discrete if it is declared so
or is activated on a zero-crossing event using the result of an
up(·) or · on · construct. Otherwise, it is typed continuous.

Instead of associating this information with signals, we
take a simpler approach and associate it with functions: a

function f is given a type signature t1
k→ t2 where t1 is the

type of its input, t2 is the type of its output and k is a kind. If
k = C, f may only be used in a continuous context. If k = D,
f may only be used in a discrete context. If k = A, then f
is a combinatorial function that can be used in expressions
of any kind. There is a subkinding relation where, for all k,
k ⊆ k and A ⊆ k. The type language is:

σ ::= ∀β1, ..., βn.t
k→ t

t ::= t× t | β | bt
k ::= D | C | A
bt ::= unit | float | int | bool | zero

where σ defines types schemes and β1, ..., βn are type vari-
ables. A type t is either a pair (t × t), a type variable (β)
or a base type (bt), and zero is the type of zero-crossing
conditions, with up(·) and · on · as the only constructors.

As is typical, the typing rules are defined with respect to
typing environments. We write G for the environment that
accumulates over the sequence of global declarations in a
program, mapping each to a type scheme (σ). And we write
H for a local environment mapping each variable x to its
type t and status: init(x) : t if the initial value is defined
but not the derivative, der(x) : t if the derivative is defined
but not the initial value, last(x) : t if the last(·) operator
may be applied, and x : t otherwise.

G ::= [f1 : σ1; . . . ; fn : σn]

H ::= [] | H,x : t | H, last(x) : t | H, init(x) | H, der(x)

Operations on Environments.
If H1 and H2 are two environments, H1 + H2 is their

union, provided their domains are disjoint; H1, H2 is their
concatenation; H1 ∗H2 is a new environment such that

(H1 + [x : t]) ∗ (H2 + [x : t]) = (H1 ∗H2) + [x : t]
(H1 + [last(x) : t]) ∗ (H2 + [last(x) : t]) =

(H1 ∗H2) + [last(x) : t]
(H1 + [init(x) : t]) ∗ (H2 + [der(x) : t]) =

(H1 ∗H2) + [last(x) : t]

(where + and ∗ are associative and commutative). The ini-
tial environment G0 gives the type signatures of imported
operators (of kind A), synchronous primitives (of kind D),
and zero-crossing constructors:

(+) : int× int
A→ int

(=) : ∀β.β × β A→ bool

pre(·) : ∀β.β D→ β

· fby · : ∀β.β × β D→ β

· -> · : ∀β.β × β D→ β

up(·) : float
C→ zero

· on · : zero× bool
A→ zero

Remark 1 (up(·): real or boolean?). The function
up(x) takes an x of type float. Alternatively, x could be
a bool; with the mapping {tt 7→ 1.0, ff 7→ −1.0} for the
solver. The methods are equally expressive, but the modified
secant method in Sundials converges faster in the first.

The type of transition guards.
Transition guards in discrete automata have type bool.

They are evaluated when a reaction occurs and the source
state of their transition is active. Guards in continuous au-
tomata are the same conceptually, but in practice discrete
events are communicated as zero-crossings. Thus, we write
k(bool) for the type of guards in context k, which is defined
C(bool) = zero, D(bool) = bool and A(bool) = bool.

Generalization and Instantiation.
The types of program declarations are generalized to type

schemes (σ) by quantifying over all free variables, which is
valid since they are defined globally.

gen (t1
k→ t2) = ∀β1, ..., βn.t1

k→ t2
if {β1, ..., βn} = FV (t1 → t2)

The variables in a type scheme σ can be instantiated, and the
kind k of a function can be replaced with any kind k′ where
k ⊆ k′. Let Inst(σ) be the set of all such instantiations.

k ⊆ k′

(t
k′
→ t′)[t1/β1, ..., tn/βn] ∈ Inst(∀β1, ..., βn.t

k→ t′)

Typing is defined by the predicates (typ-env) stating that
the equation E produces the type environment H ′ and has
kind k, (typ-exp) stating that, in the global environment G
and the local environment H, an expression e has type t and
kind k and (typ-pat) which defines the type and environment
produced by a pattern p, for which kinds are unnecessary.

(typ-env)

G,H `k E : H ′
(typ-exp)

G,H `k e : t
(typ-pat)

`pat p : t,H

(init)

G,H `C e : t

G,H `C initx = e : [init(x) : t]

(der)

G,H `C e : float

G,H `C derx = e : [der(x) : float]

(and)

G,H `k E1 : H1 G,H `k E2 : H2

G,H `k E1 and E2 : H1 +H2

(eq)

G,H `k e : t

G,H `k x = e : [x : t]

(app)

t
k→ t′ ∈ Inst(G(f)) G,H `k e : t

G,H `k f(e) : t′

(letin)

G, H,H0 `k E : H0 G, H,H0 `k e : t

G,H `k let E in e : t

(const)

G,H `k 4 : int
(last)

G,H + [last(x) : t] `k last(x) : t
(var)

G,H + [x : t] `k x : t
(var-last)

G,H + [last(x) : t] `k x : t

(pair)

G,H `k e1 : t1 H `k e2 : t2

G,H `k (e1, e2) : t1 × t2

(pat-pair)

`pat p1 : t1, H1 `pat p2 : t2, H2

`pat p1, p2 : t1 × t2, H1 +H2

(pat-var)

`pat x : t, [x : t]

(def-node)

`pat p : t1, Hp G,Hp `k e : t2

G ` let k f(p) = e : [f : genG(t1
k→ t2)]

(def-seq)

G ` d1 : G1 G,G1 ` d2 : G2

G ` d1; d2 : G1 +G2

Figure 2: Typing rules for data-flow equations

(auto)

∀i ∈ I, j ∈ Ji, ` spi : [Si : ti], Hi G,H +Hi `k ui : H ′i, [Sl : tl]l∈Li G,H +Hi `Ak sj : [Sj : tj]

G,H `k automaton (spi −→ ui unless (sj)j∈Ji)i∈I : Πi∈IH
′
i

(local-in)

G,H + [x : t] `k u : H ′

G,H `k local x in u : H ′

(do-until)

G,H `k E : H ′ ∀j ∈ J, G,H ′ `kk sj : [Sj : tj]

G,H `k do E until (sj)j∈J : H ′, [Sj : tj]j∈J

(param-state)

` p : tp, Hp

` S(p) : [S : tp], Hp

(then)

G,H `k1 e : k2(bool) G,H `D se : t

G,H `k1
k2
e then S(se) : [S : t]

(continue)

G,H `k1 e : k2(bool) G,H `D se : t

G,H `k1
k2
e continue S(se) : [S : t]

Figure 3: Typing rules for automata (see also comments in Section 4.2)

Three other predicates are used for typing automata: (until)

defines the environment defined by the body and computes
the list of target states together with the types of their pa-
rameters; (then-continue) defines the target state which can
be reached by a handler e then se or e continue se, k1 is a
restriction on the kind of the guard expression, and k2 gives
a restriction on its type; and (s-param) returns the type and
environment associated with a state pattern.

(until)

G,H `k u : H ′, [Sl : tl]l∈L

(then-continue)

G,H `k1
k2
s : [Sl : tl]l∈L

(s-param)

` S(p) : [S : tp], Hp

The typing rules are presented in Figures 2 and 3. Figure 2
is treats data-flow primitives.

Rule (init). An initialization of a variable x is well-typed if
the defining expression e is well-typed. It takes the type t
and kind k of e. The status of x is marked init(x).

Rule (der). An expression e defining the derivative of a vari-
able x must be of type float and kind C, and there must be
an accompanying init. The status of x is marked der(x).

Rule (and). Parallel equations must be well-typed with the
same kind.

Rule (eq). The kind k and type t of a variable x defined by
an equation are those of the expression e, provided it is
well-typed.

Rule (app). A function application is well-typed if the kind k
and argument type t of the function f can be instantiated
to match those of a well-typed argument e. The result has
(instantiated) type t′ and the same kind.

Rule (letin). A local definition is well-typed if the equa-
tions E and resulting expression e are well-typed in an
extended environment. Both must have the same kind k.

Rule (const). Set of rules illustrated by an integer constant.

Rules (last), (var) and (var-last). Occurrences of last(·)
and variables must be respect the enclosing environment.

Rule (pair). The rule for pairing is similar to the one for the
parallel composition of equations.

Rules (pat-pair) and (pat-var). These rules build an initial
environment for patterns.

Rule (def-node). The type of a node is generalized from the
types of the input pattern t1 and defining expression t2.
The kind k of the expression e must match the declared
kind.

Rule (def-seq). Function definitions are typed sequentially.

Figure 3 defines the typing of control structures:

Rule (auto). In the typing rule for automata, the kind k ∈
{D, C}. The state pattern of each handler spi is typed,
associating the state label Si with the type of its parame-
ter, and producing an environment Hi comprising the vari-
ables bound in the pattern and their types. The body and
weak preemption conditions ui are typed in a combination
of the global environment H and that of the parameter
variables Hi to yield an environment H ′i, comprising the
names defined by the body, and, for each condition, the
destination state label Sl and the type of the associated
expression tl. The strong preemption conditions sj are
typed similarly. The (auto) rule is conditional on addi-
tional constraints, stating that target states of strong and
weak preemptions belong to the set of states defined by the
automaton:

[Sl : tl]l∈Li ⊆ [Si : ti]i∈I [Sj : tj]j∈Ji ⊆ [Si : ti]i∈I

Rule (local-in). An x defined in u can be made local to u.

Rules (do-until) and (param-state). These rules apply re-
spectively to state bodies E (and their weak preemption
conditions sj) and to state patterns.

Rules (then) and (continue). Guard expressions e must be
of type k2(bool), which is bool for discrete automata and
zero for continuous ones. This constraint guarantees that
transitions are only taken in response to discrete events.
The context of the guard expression is given by k1. For
strong transitions, it will be A (combinatorial), and for weak
transitions it will either be C or D depending on the overall
kind of an automaton. The expression yielding the argu-
ment for the destination state se is always of kind D, which
allows synchronous functions to be executed in continuous
automata when a transition fires.

5. TRANSLATION TO SUBSET
Well-typed programs can be translated to the synchronous

subset of the language. The translation removes ODEs and
zero-crossings and leaves discrete computations unchanged.
It yields a sequential transition function that can be pro-
cessed by a synchronous compiler.

The translation replaces zero-crossing operators and ODE
definitions. Each zero-crossing operator up(e) is replaced
by adding a new input zi of type bool, which replaces the
operator occurence, and a new output ui of type float ×
bool with a defining equation. For each ODE derx = e with
initialization initx = e0 we add a new input variable lx, two
new output variables x and dx, and a local variable lastx.
Two new equations are added to define dx and lastx, and
the original equation defining x is modified.

Extra inputs and outputs are collected into vectors dur-
ing the translation. For the inputs, we write zv to denote
a vector of zero-crossing variables [z1, . . . , zn], and lxv for
a vector of continuous state variables [lx1, . . . , lxk]. For the
outputs, we write upv for vectors of zero-crossing expression

variables [up1, . . . , upn], xv for vectors of continuous state
variables [x1, . . . , xk] and dxv for the vectors of instanta-
neous derivatives [dx1, . . . , dxk]. The concatenation of two
vectors is written [z1, . . . , zn] @ [z′1, . . . , z

′
m], it yields a new

vector [z1, . . . , zn, z
′
1, . . . , z

′
m].

The translation is defined by TrDef (d), TrEq(E), Tr(e)
and TrAuto((spi −→ . . .)i∈I). We describe the first three,
that treat data-flow primitives, before discussing the last.

The TrDef (d) function addresses function declarations, it
relies on an auxilliary mapping KindOf (f) that gives the
kind k ∈ {A, D, C} for the definition of a function f . Discrete
functions are not modified by the translation. Hybrid func-
tions are altered by the addition of inputs and outputs which
are passed through internal occurrences of zero-crossing op-
erators up(e), ODEs derx = e and initx = e0, and nested
hybrid function applications f(e).

The TrEq(E) function treats equations. It returns a tuple
〈zv , upv , lxv , xv , dxv , E′〉, where the vectors contain the re-
quired inputs and outputs and E′ is the translated equation
(multiple equations are combined with and).

The Tr(e) function defines the translation of an expres-
sion. It returns a tuple 〈e′, zv , upv , lxv , xv , dxv , E〉, with the
usual vectors of inputs and outputs, and where e′ is the
translated expression and E are the auxilliary definitions.

These three functions are defined in Figure 4. To simplify
the presentation, we assume non-conflicting names for all
variables, and furthermore that for every variable x there are
corresponding (and unique) variables: lx, lastx and dx.

1. Variables y and constants v are not changed. They return
empty vectors for all variables and equations.

2. Applications of last(y) are replaced with the correspond-
ing initialized last value lasty whose eventual definition
is guaranteed by the type system.

3. The operator up(e) is replaced by a fresh variable z that is
added as a zero-crossing input. Another fresh variable u
is defined by a new equation u = (e, tt) and added to
the list of zero-crossing outputs, the second element of the
pair is a status flag used in the translation of automata.11

4. e1 on e2 is translated into the boolean operation &.

5. Local definitions let E in e are flattened. This is sound,
given appropriate renaming, in the basic language. But
the compiler contains a more intricate treatment to avoid
problems across automaton states, and to preserve the
order of side-effects.

6. Applications of combinatorial (A) and discrete (D) func-
tions are not changed.

7. For applications of hybrid (C) functions, we must account
for the additional inputs and outputs added by the trans-
formation. We thus introduce fresh input variables z
and lx, adding them to the appropriate vectors, a local
variable r to hold the result of the function call, and three
fresh output variables up, x and dx. The local and output
variables are defined by a new equation where the func-
tion is invoked, and the original expression is replaced by
the variable holding the result. Note that the structure
of nested hybrid function applications is reflected in the
tree structure of the types of the new inputs and outputs.

11Signals [4] are used instead of explicit status values in the
full language where the added equation becomes emit u = e.

Tr(y) = 〈y, [], [], [], [], [], []〉
Tr(v) = 〈v, [], [], [], [], [], []〉
Tr(last(y)) = 〈lasty, [], [], [], [], [], []〉

where lasty is the initialized last value corresponding to y

Tr(up(e)) = let 〈e′, zv , upv , lxv , xv , dxv , E〉 = Tr(e) in
〈z, z.zv , u.upv , lxv , xv , dxv , u = (e′, tt) and E〉
where z and u are fresh variables.

Tr(e1 on e2) = let 〈e′1, zv1, upv1, lxv1, xv1, dxv1, E1〉 = Tr(e1) in
let 〈e′2, zv2, upv2, lxv2, xv2, dxv2, E2〉 = Tr(e2) in
〈e′1 & e′2, zv1 @ zv2, upv1 @ upv2, lxv1 @ lxv2, xv1 @ xv2, dxv1 @ dxv2, E1 and E2〉

Tr(let E in e) = let 〈zv1, upv1, lxv1, xv1, dxv1, E1〉 = TrEq(E) in
let 〈e′, zv2, upv2, lxv2, xv2, dxv2, E2〉 = Tr(e) in
〈e′, zv1 @ zv2, upv1 @ upv2, lxv1 @ lxv2, xv1 @ xv2, dxv1 @ dxv2, E1 and E2〉

Tr(f(e)) = let 〈e′, zv , upv , lxv , xv , dxv , E〉 = Tr(e) in
〈f(e′), zv , upv , lxv , xv , dxv , E〉
if KindOf (f) ∈ {A, D}

Tr(f(e)) = let 〈e′, zv , upv , lxv , xv , dxv , E〉 = Tr(e) in
〈r, z.zv , up.upv , lx.lxv , x.xv , dx.dxv , (r, up, x, dx) = f(z, lx, e′) and E〉
if KindOf (f) = C and where r, z, up, lx, x, and dx are fresh variables.

TrEq(x = e) = let 〈e′, zv , upv , lxv , xv , dxv , E〉 = Tr(e) in
〈zv , upv , lxv , xv , dxv , x = e′ and E〉

TrEq(initx = e0) = let 〈e′0, zv0, upv0, lxv0, xv0, dxv0, E0〉 = Tr(e0) in
〈zv0, upv0, lxv0, xv0, dxv0, (lastx = e′0 -> lx) and E0〉
where lx and lastx correspond with x.

TrEq(derx = e) = let 〈e′, zv , upv , lx.lxv , xv , dxv , E〉 = Tr(e) in
〈zv , upv , lx.lxv , x.xv , dx.dxv , (x = lastx) and (dx = e′) and E〉
where lx, lastx and dx correspond with x.

TrEq(automaton (spi −→ . . .)i∈I) = let 〈(sp′i −→ . . .)i∈I , zv , upv , lxv , xv , dxv〉 = TrAuto((spi −→ . . .)i∈I) in
〈zv , upv , lxv , xv , dxv , automaton (sp′i −→ . . .)i∈I〉

TrEq(E1 and E2) = let 〈zv1, upv1, lxv1, xv1, dxv1, E
′
1〉 = TrEq(E1) in

let 〈zv2, upv2, lxv2, xv2, dxv2, E
′
2〉 = TrEq(E2) in

〈zv1 @ zv2, upv1 @ upv2, lxv1 @ lxv2, xv1 @ xv2, dxv1 @ dxv2, E
′
1 and E′2〉

TrDef (let k f(y) = e) = let 〈e′, zv , upv , lxv , xv , dxv , E〉 = Tr(e) in
let D f(zv , lxv , y) = let E in (e′, upv , xv , dxv) if k = C

TrDef (let k f(y) = e) = let k f(y) = e if k ∈ {A, D}

Figure 4: Translation of Data-flow Equations into Synchronous Code

8. For basic equations x = e, the expression is translated.

9. An initialization of a continuous state variable x is re-
placed by a new definition for the corresponding lastx
variable, which takes an initial value in the initial reac-
tion or the first reaction after a reset and otherwise the
value given as input by the solver.

10. A derivative equation derx = e is replaced by two new
equations; one defining the value of the output x—which,
in the absence of resets is just the initialized last vari-
able lastx—and the other defining an output for the in-
stantaneous derivative dx. The state variable x must be
an output so that the corresponding continuous state can
be reset in discrete reactions. A variable lx for the last
state value from the solver is added to the input vector.

11. The translation of automata are discussed below.

12. Parallel (sets of) equations are translated separately and
the results combined.

13. Continuous function definitions are translated into dis-
crete functions where the zv and lxv vectors are turned
into patterns over inputs, and the upv , xv and dxv vectors
are returned as outputs.

14. Discrete and combinatorial functions are not changed.

Translation of Automata.
Automata are translated by a function

TrAuto((spi −→ ui unless (sj)j∈Ji)i∈I)

that returns a tuple

〈(spi −→ u′i unless (s′j)j∈Ji)i∈I , zv , lxv , upv , xv , dxv〉.

The translation is only performed for automata in continu-
ous contexts; discrete automata are not translated.

Some auxiliary definitions are used in the translation of
automata. We write x ∈ v to mean that x is an element in

TrUntil(local x in u) =
let 〈u′, zv ′, upv ′, lxv ′, xv ′, dxv ′〉 = TrUntil(u) in
if x ∈ xv ′

then 〈local lastx in u′, zv ′, upv ′, lxv ′, xv ′, dxv ′〉
else 〈local x in u′, zv ′, upv ′, lxv ′, xv ′, dxv ′〉

TrUntil(do E until (sj)j∈J) =
let 〈E′, zv ′, upv ′, lxv ′, xv ′, dxv ′〉 = TrEq(E) in
〈do E′ until (sj)j∈J , zv ′, upv ′, lxv ′, xv ′, dxv ′〉

TrAuto((spi −→ ui unless (sj)j∈Ji)i∈I) =
let (〈u′i, zv ′i, upv ′i, lxv ′i, xv ′i, dxv ′i〉 = TrUntil(ui))i∈I in
let zv = ⊕i∈Izv i in
let upv= ⊕i∈Iupv i in
let lxv = ⊕i∈I lxv i in
let xv = ⊕i∈Ixv i in
let dxv = ⊕i∈Idxv i in
let (u′′i = add(u′i)({u = (0.0, ff) | u ∈ upv \ upv i}))i∈I
in
let (u′′′i = add(u′′i)({dx = 0.0 | dx ∈ dxv \ dxv i}))i∈I in
let (u′′′′i = add(u′′′i)({x = lx | x ∈ xv \ xv i}))i∈I in
〈(spi −→ u′′′′i unless (sj)j∈Ji)i∈I , zv , upv , lxv , xv , dxv〉

Figure 5: Translation of Automata

the vector v,12 and x ∈ v1 \ v2 to mean that x ∈ v1 ∧x 6∈ v2.
The union of vectors l1 and l2 is written l1⊕ l2, and defined:

[]⊕ l = l ⊕ [] = l
(x.xs)⊕ ys = x.(xs⊕ ys) if x 6∈ ys
(x.xs)⊕ ys = xs⊕ ys otherwise

This operator is lifted to sets of vectors:

lx = ⊕i∈I(lxi) = lxi1 ⊕ ...⊕ lxin if I = {i1, ..., in}

For a body u and a set of equations E, add(u)(E) builds a
new body from the given one by adding every e ∈ E.

The translation of automata is presented in Figure 5.
TrAuto(·), translates the bodies and weak preemptions of
all states i ∈ I, via the auxiliary function TrUntil(·). The
vectors zv , upv , lxv , xv and dxv for an automaton are formed
from the unions of the corresponding vectors from each state
body. All of the variables in the output vectors—upv , xv
and dxv—have to be defined in every state body. For every
variable up that is not already defined in a state, we add
the equation up = (0.0, ff); the reason is explained below.
For an undefined derivative variable, we add the equation
dxv = 0.0. And for an undefined state variable, we add the
equation x = lx, where lx is the corresponding (uninitial-
ized) state input. The strong transition expressions (sj)j∈J
are left unchanged since the guards are combinatorial and
the actions are discrete.

TrUntil(·) transforms the equations in body E but leaves
the transition expressions (sj)j∈J unchanged—we make the
usual assumption that each weak transition guard is replaced
with a variable defined in the state body. Local variable dec-
larations are left in place, unless they apply to a continuous
state variable, since these variables must be completed in the
other states and available as outputs. But if x is revealed,
the corresponding lastx variable must be hidden since oth-
erwise it must also be defined in the other states.

12Here, to simplify the presentation, we only consider un-
structured vectors.

Changes to the execution model.
In the work presented in this paper, we try to extend our

earlier approach [1] as conservatively as possible. Neverthe-
less, two adjustments to the original execution model are
required when automata are added.

A hybrid program is executed by alternating between a
continuous phase where the program is exercised by a nu-
meric solver and a discrete phase where the effects of zero-
crossings are calculated. Discrete phases succeed one an-
other for as long as new zero-crossings are detected. An ex-
tra discrete reaction is required whenever a weak transition
is fired to ensure that initialization of the successor state oc-
curs in a discrete reaction and not inside the numeric solver.
In the current implementation an extra discrete reaction is
always executed after no more zero-crossings have been de-
tected (and it may itself generate new zero-crossings).

The value of a zero-crossing output up becomes (0.0, ff)
when the parent state of the zero-crossing is inactive. The
0.0 value ensures that a zero-crossing is not generated im-
mediately after returning to the active state. Setting the
status flag to ff tells the discrete solver not to generate a
(spurious) zero-crossing even if the previous value of up was
negative. Note that zero-crossing detection is not reset by a
self-looping then transition.

6. RELATED WORK AND DISCUSSION

Related Work.
There are other hybrid data-flow languages that include

automata [3]. The two which have most influenced our ap-
proach are Hyvisual/Ptolemy II and Simulink/Stateflow.

Lee and Zheng [10] have already considered hybrid sys-
tems modelers from a programming language perspective,
and there are many similarities between their approach and
ours. In particular, their implementation of Hyvisual13 on
top of Ptolemy II14 allows arbitrary hierarchical nestings
of automata, continuous data-flow networks, and discrete
data-flow networks. Models are executed by cycling between
discrete and continuous phases. A discrete phase is executed
as long as the discrete state keeps changing. Rather than
define a type system to separate discrete from continuous
computations, there is a ‘simple consistency check’ to forbid
direct connections between discrete and continuous ports.

In later work [11], Lee and Zheng show that the syn-
chronous model is powerful enough to encode continuous-
time. We take a similar approach but use the synchronous
model both as a semantic base and as a compilation tar-
get, permitting us to exploit existing compilation and analy-
sis techniques. Moreover, source-to-source translations have
good traceability which is important in some domains. Nev-
ertheless, our approach is more limited in some respects. We
do not, for instance, consider multiple numerical solvers.

The Simulink/Stateflow system provides interacting
discrete and continuous data-flow networks and automata.
Rather than a formal type system, a number of restrictions
for continuous-time modeling are proposed [13, 16-26] and
enforced by the Stateflow compiler. These rules aim to elim-
inate side-effects during numerical integration (‘minor time
steps’): assignments and function calls may only occur on
transitions and when entering or exiting a state, and the

13http://ptolemy.eecs.berkeley.edu/hyvisual/
14http://ptolemy.berkeley.edu/ptolemyII/

http://ptolemy.eecs.berkeley.edu/hyvisual/
http://ptolemy.berkeley.edu/ptolemyII/

derivatives of continuous variables may only be set, using a
*_dot notation, in during actions

The behavior of zero-crossings in Stateflow is also inter-
esting. Transition guards in continuous automata are arbi-
trary boolean expressions—using input events makes a chart
‘triggered’ rather than continuous. When zero-crossings are
enabled for a chart, the simulation engine tries to accurately
detect the instants of transition, not by monitoring the de-
tails of sub-expressions, but instead by changing the value
of a zero-crossing expression from negative to positive upon
state entry.15 Charts are executed just before (t − ε) the
calculated time of a zero-crossing (t), and again just after-
ward (t+ ε). In this way, cascades of zero-crossings are also
possible, but some time always passes between any two.

While Simulink/Stateflow is obviously much richer and
more polished than our proposal, we believe that our ap-
proach is not without value. For instance, rather than ef-
fectively having two simulation engines [3, p. 28], we seek
a consistent and simple integration of continuous automata
and data-flow networks. Furthermore, our goal of better un-
derstanding the fundamentals of such tools mandates that
we seek a small set of primitives, rather than attempt to
provide a large number of features.

Boolean guards.
The encoding for boolean guards mentioned in Remark 1

is enough to detect enabling in a continuous phase, but not
to have transitions with enabled guards taken continually.
This alternative can be implemented using intricate encod-
ings of zero-crossings, but it would also be possible to ei-
ther change the definition of up(x) to (x ≥ 0 -> z), that is
true after a reset if x is not negative and then equal to
the input from the solver, or to add primitives from which
the same behaviour can be constructed, i.e. to add an

init: bool
C→ zero, that only tests its argument when reset,

and an orz: zero× zero
C→ zero for combining events.

Compiling automata first.
This paper presents one of the paths shown in Figure 1,

but we have also experimented with translating automata
before ODEs. Our type system is not fine enough, however,
to maintain the information implicit to an automaton that
guarantees sound interaction between discrete and contin-
uous behaviors. In simple terms: the intermediate results
of compilation are not well-typed. This is a subject of our
continuing research.

Sharing solver resources.
Another subject of our continuing research is to find a

natural way of sharing zero-crossings and continuous states
across mutually-exclusive automaton modes. This turns out
to be quite delicate in our current execution and semantic
models, and it is an inadequacy that we would like to correct.

7. CONCLUSION
This paper introduced a language for programming ex-

plicit hybrid systems with synchronous concurrency, ordi-
nary differential equations, and hierarchical automata. A
synchronous language is used at the programming level and

15This is mentioned in the documentation; and the insensi-
tivity to guard dynamics is also evident in debugger traces.

as a target for code generation via a source-to-source trans-
lation. Unsound combinations of continuous and discrete
elements are rejected by a type system. Our approach elu-
cidates some aspects of designing hybrid modelers.

8. REFERENCES
[1] A. Benveniste, T. Bourke, B. Caillaud, and M. Pouzet.

Divide and recycle: types and compilation for a hybrid
synchronous language. In ACM SIGPLAN/SIGBED
Languages, Compilers, Tools & Theory for Embedded
Systems (LCTES), Chicago, USA, April 2011.

[2] A. Benveniste, P. Caspi, S.A. Edwards, N. Halbwachs,
P. Le Guernic, and R. de Simone. The synchronous
languages 12 years later. Proceedings of the IEEE,
91(1), January 2003.

[3] L.P. Carloni, R. Passerone, A. Pinto, and A.L.
Sangiovanni-Vincentelli. Languages and tools for
hybrid systems design. Foundations & Trends in
Electronic Design Automation, vol. 1, 2006.

[4] J.-L. Colaço, G. Hamon, and M. Pouzet. Mixing
signals and modes in synchronous data-flow systems.
In ACM Int. Conf. on Embedded Software
(EMSOFT’06), Seoul, South Korea, October 2006.

[5] J.-L. Colaço, B. Pagano, and M. Pouzet. A
conservative extension of synchronous data-flow with
state machines. In ACM Int. Conf. on Embedded
Software (EMSOFT’05), Jersey City, New Jersey,
USA, September 2005.

[6] D. Harel. StateCharts: a Visual Approach to Complex
Systems. Science of Computer Programming,
8-3:231–275, 1987.

[7] T. Henzinger. The theory of hybrid automata. NATO
ASI Series F: Computer & Systems Sciences,
170:265–292, 2000. Springer-Verlag.

[8] A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee,
R. Serban, D.E. Shumaker, and C.S. Woodward.
SUNDIALS: Suite of nonlinear and differential /
algebraic equation solvers. ACM Trans. Mathematical
Software, 31(3):363–396, September 2005.

[9] E.A. Lee. Finite state machines and modal models in
Ptolemy II. Technical Report UCB/EECS-2009-151,
EECS Uni. Calfornia at Berkeley, November 2009.

[10] E.A. Lee and H. Zheng. Operational semantics of
hybrid systems. In Hybrid Systems: Computation and
Control (HSCC), volume 3414 of LNCS, Zurich,
Switzerland, March 2005. Springer-Verlag.

[11] E.A. Lee and H. Zheng. Leveraging synchronous
language principles for heterogeneous modeling and
design of embedded systems. In EMSOFT, Salzburg,
Austria, September/October 2007.

[12] F. Maraninchi and Y. Rémond. Mode-automata: a
new domain-specific construct for the development of
safe critical systems. Science of Computer
Programming, 46(3):219–254, 2003.

[13] The MathWorks, Natick, MA, USA. Stateflow 7
User’s Guide, 2011.

[14] M. Pouzet. Lucid Synchrone, version 3. Tutorial and
reference manual. Université Paris-Sud, LRI, April
2006. (www.di.ens.fr/∼pouzet/lucid-synchrone).

	Introduction
	Overview
	A Synchronous Language with Automata
	Syntax
	Examples and Intuitive Semantics

	Hybrid Synchronous Language
	Extended Syntax of the Language
	Static Typing

	Translation to Subset
	Related Work and Discussion
	Conclusion
	References

